Département de génie électrique et de génie informatique
Faculté des sciences et de génie

Date November 10, 2015
Local PLT-2548

Vision numérique
GIF-4100 / GIF-7001

All documents allowed except the Internet

Heure 13h30-16h20

Question 1. (20 points) Radiometry

Consider the geometry in Figure 1 showing a point source of intensity 10000 lux which illuminates a Lambertian surface element $d A_{l}$ having an area of $0.1 \mathrm{~m}^{2}$ and a BRDF $\mathrm{p}=0.0155$. The surface element $d A_{l}$ diffuses the light towards a surface element $d A_{2}$ having an area of $0.1 \mathrm{~m}^{2}$. What is the illuminance received by $d A_{2}$? Please provide the details of the steps involved in your calculation.

Figure 1. Geometry of Question 1

Question 2. (15 points) Median filtering

Consider the line in the image shown in Figure 2 (a). The numbers represent the discrete illuminance on a dynamic range of 8 bits in each pixel of the line. We would like to reduce the effects of impulse noise on this line by applying a median filter whose kernel is shown in Figure 2 (b). On the kernel, symbol x represents the center pixel of the filter. Provide the result of filtering and explain your answer.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 015 & 015 & 015 & 020 & 125 & 015 & 022 & 017 & 215 & 215 & 010 \\
\hline
\end{array}
$$

(a)

(b)

Figure 2. (a) Line of the image (b) Kernel of the median filter

Question 3. (15 points total) Detection of illuminance discontinuities

A. (5 points) Consider the illuminance signal showing a "jump" discontinuity inFigure 3 (a). What is the signal that will result from the application of discontinuities detection operator -1 01 on this signal? Is this operator adequate to detect the discontinuity? Explain your answer.
B. (5 points) Now consider the illuminance "plateau" signal in Figure 3 (b). What is the signal resulting from the application of discontinuities detection operator -1 01 on the signal? Is this operator adequate to detect the discontinuity? Explain your answer.
C. (5 points) Now consider the illuminance signal showing a discontinuity of the type "roof" in Figure 3 (c). What is the signal resulting from the application of discontinuities detection operator -101 on the signal? Is this operator adequate to detect the discontinuity? Explain your answer.

Figure 3. (a) Signal "jump", (b) Signal "plateau" (c) Signal "roof" of Question 3

Question 4. (15 points) Nonlinear Filtering

Consider the binary signal in Figure 4. What dilation mathematical morphology structuring element is sufficient to fill the hole formed by " 0 " values? Explain your answer.

Figure 4. Binary signal of Question 4

Question 5. (15 points) SIFT descriptor

Briefly describe the steps for calculating the SIFT descriptor.

Question 6. (20 points) Stereoscopic Reconstruction

Consider the stereoscopic geometry in a canonical position (i.e. with parallel optical axes) in Figure 5. The disparity is defined as $d=x_{d}-x_{g}$, where x_{d} and x_{g} are respectively the image coordinates of an object point located at a distance z from two cameras (assume that the y coordinates are zero (i.e. in the plane of the page)).

From the above definition and the geometry of the problem, derive the expression of z as a function of the disparity d, of the focal length F of the pinhole cameras, and the separation Δ between the two pinhole cameras.

Figure 5. Geometry of Question 6

