FIGURE 1.2 (a) First transistor (Property of AT&T Archives. Reprinted with permission of AT&T.) and (b) first integrated circuit (Courtesy of Texas Instruments.)
FIGURE 1.7 Silicon lattice and dopant atoms
FIGURE 1.8
p-n junction diode
structure and symbol
FIGURE 1.10 Transistor symbols and switch-level models
FIGURE 1.9 nMOS transistor (a) and pMOS transistor (b)
FIGURE 1.3 (a) Intel 1101 SRAM (© IEEE 1967 [Vadasz69]) and (b) 4004 microprocessor (Reprinted with permission of Intel Corporation.)
FIGURE 1.4 Transistors in Intel microprocessors [Intel10]
FIGURE 1.5 Clock frequencies of Intel microprocessors
FIGURE 1.6 Process generations. Future predictions from [SIA2007].
FIGURE 1.1 Size of worldwide semiconductor market (Courtesy of Semiconductor Industry Association.)
(a) CMOS Inverter

(a) CMOS Inverter
\(Y = \overline{A} \cdot \overline{B} \)
FIGURE 1.74 2-input NAND gate stick diagram
Figure 1.75 Level-sensitive latch stick diagram
FIGURE 1.62 MIPS floorplan

- mips (4.8 M\lambda^2)
- control 2550\lambda \times 380\lambda (1.0 M\lambda^2)
- datapath 2550\lambda \times 1320\lambda (3.4 M\lambda^2)

wiring channel: 25 tracks = 200\lambda

height determined from PLA size width matches datapath

width determined from slice plan

10 I/O pads

5000 \lambda

3500 \lambda

1900 \lambda

2550 \lambda

3500 \lambda

5000 \lambda
FIGURE 1.64 MIPS controller layout (synthesized)
FIGURE 1.63 MIPS layout
FIGURE 1.65 Synthesized MIPS processor
FIGURE 1.67 MIPS datapath layout
FIGURE 1.69 PLA for control FSM
FIGURE 1.71 Engineer holding processed 12-inch wafer. Photograph courtesy of the Intel Corporation.
FIGURE 1.72 MIPS processor photomicrograph (only part of pad frame shown)
FIGURE 1.73 Chip in a 40-pin dual-inline package