
L'hexadécimal

3 B8 E5 EB 3 B7 20 B5 7 F 87 C5 20 1 D 9A E4 CF 2 T B8 D3 4 C4 B7 66 2 T G G G 3 C5 5F 9F 3 G E4 76 A3 3 B8 E5 EB	73 B7 20 B5 7F 87 C5 20 4D 9A E4 CF 0F 21 B8 D3 A4 C4 B7 66 A5 B4 87 B5 66 E4 76 A3 B5 B8 E5 EB 73 B7 20 B5 7F 87 C5 20	73 B7 20 B5 7F 87 C5 20 4D 9A E4 CF 0F 21 B8 D3 A4 C4 B7 66 A5 B4 87 B5 56 CF 9A 73 B5 B8 E5 EB 73 B7 20 B5 7F 87 C5 20 4D 9A E4 CF 0F 21 B8 D3	7F 87 C5 20 4D 9A E4 CF 0F 21 B8 D3 A4 C4 B7 66 A5 B4 87 B5 56 CF 9A 73 1D A4 21 7F 73 B7 20 B5 7F 87 C5 20 4D 9A E4 CF 0F 21 B8 D3 A4 C4 B7 66	0	73 B7 26 B5 7F 87 C5 20 4D 9A E4 CF 0F 21 B8 D3 A4 C4 87 B5 A6 B4 87 B5 B6 B8 E5 EB 73 B7 26 B6 7F 87 C5 20 4D 9A E4 CF 0F 21 B8 D3 A6 S4 87 B5	73 87 20 88 7F 87 C5 26 4D 9A E4 CF OF 21 88 D3 A4 C4 87 66 A5 84 87 85 56 CF 9A 73 B5 88 E5 88 73 87 20 88 7F 87 69 26 4D 9A E4 CF OF 21 88 D3 A4 C4 87 85 A5 64 87 68
35 B8 E5 EB 35 B7 20 B5 5 07 C5 20	7F 87 C5 20 4D 9A E4 CF	4D 9A E4 OF 0F 21 B8 D3 A4 C4 B7 66	A4 C4 B7 66 A6 B4 87 B5 56 CF 9A 73	7F 87 C5 20 4D 9A E4 CF 0F 21 BB D3	OF 2188 03 AA 5487 85	A4 C4 B7 68 A8 64 87 68

GIF-1001 Ordinateurs : Structure et Applications Jean-François Lalonde

Rappel: compter en base 10 (décimal)

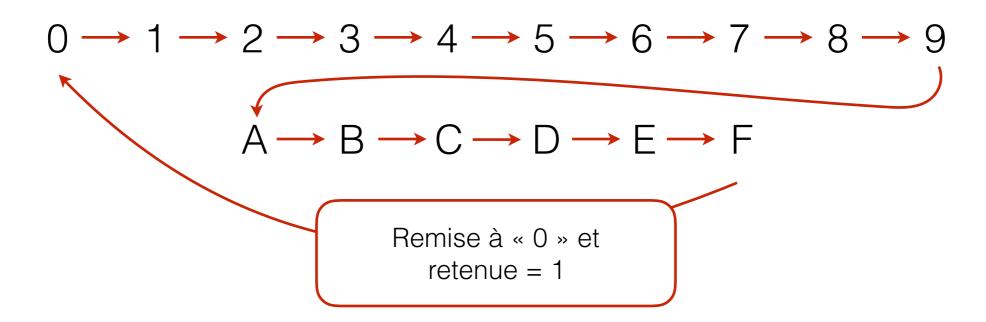
- 10 symboles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Comptons: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...?
- Que faire quand on n'a plus de symboles?
 - on recommence au début en ajoutant une retenue de 1 au prochain symbole

Rappel: compter en base 10 (décimal)

 Dans un nombre en base 10, chaque position correspond à une puissance de 10

Représentation décimale

Position 3	Position 2	Position 1	Position 0
1	4	2	3


$$1 \times 10^3 + 4 \times 10^2$$

$$2 \times 10^{1}$$
 +

$$+$$
 3 x 10⁰

Compter en base 16 (hexadécimal)

• Et si on utilisait 16 symboles au lieu de 10?

Compter en base 16 (hexadécimal)

 Dans un nombre en base 16, chaque position correspond à une puissance de 16

Représentation décimale

Position 3	Position 2	Position 1	Position 0
1	4	2	3

$$1 \times 16^3 + 4 \times 16^2$$

Récapitulation

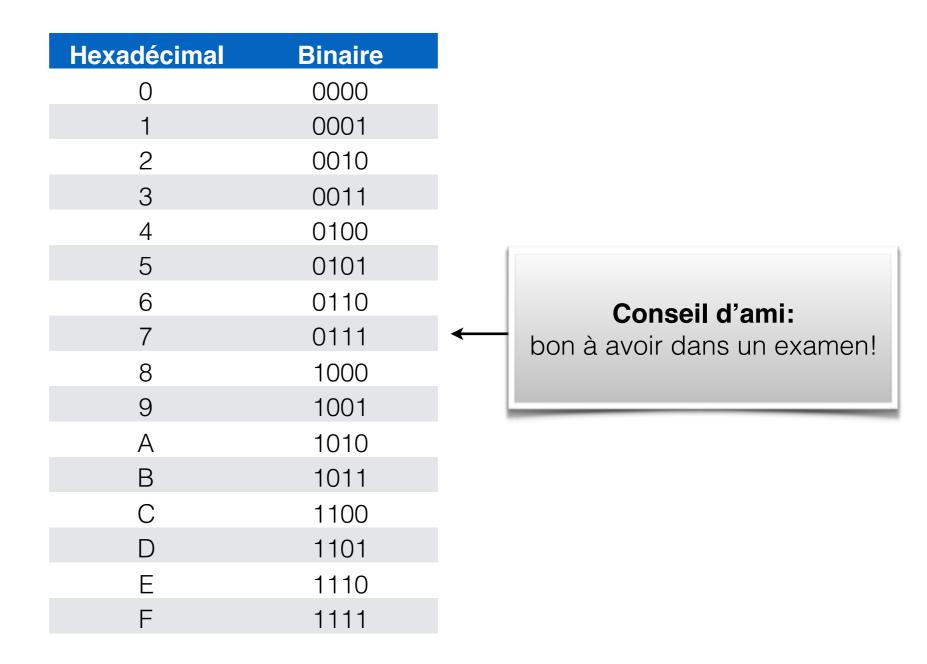
 Pour représenter un nombre entier, nous sommes familiers avec la notation décimale, mais plusieurs options sont possibles.

Il faut définir:

ase	Symboles	
2	0 et 1	(binaire)
10	0 à 9	(décimal)
16	0 à 9, A à F	(hexadécimal)

Conventions d'écriture

- Comment différencier
 - 1111 (hexadécimal),
 - 1111 (binaire),
 - et 1111 (décimal)?
- Hexadécimal: on utilise le préfixe «0x» ou l'indice «h». Ex:
 - $0x1111 = 11111_h = 4369$
- Binaire: on utilise le préfixe «0b» ou l'indice «b». Ex:
 - $0b1111 = 11111_b = 0xF = 15$
- Décimal: aucune notation particulière.


Question

Combien de bits a-t-on besoin pour représenter 1 caractère hexadécimal?

- Indices:
 - base 16, donc 16 valeurs possibles
 - Combien de bits sont nécessaires pour représenter 16 valeurs?
 - $2^N = 16$. Que vaut *N*?
 - $N = \log_2(16) = 4$

Hexadécimal vs binaire

 Comme 1 caractère hexadécimal équivaut à 4 bits, on peut se faire une table « aide-mémoire »:

Exercice: hexadécimal -> binaire

Hexadécimal	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

OxCAFE

0x12AB

Exercice: hexadécimal -> binaire

Hexadécimal	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

0xCAFE

0b 1100 1010 1111 1110

0x12AB

0b 0001 0010 1010 1011

Exercice: binaire -> hexadécimal

Hexadécimal	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

0b 1010 0011 1101 1000

0b 1100 0011 1001 0000

Exercice: binaire -> hexadécimal

Hexadécimal	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

0b 1010 0011 1101 1000

0xA3D8

0b 1100 0011 1001 0000

0xC390

PHIRTM #4

- L'hexadécimal est une façon *plus compacte* de représenter du binaire.
 - 1 « symbole » en hexadécimal = 4 bits.

Hexadécim	al Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
Е	1110
F	14 1111

Conversion vers décimal

- binaire → décimal
 - 0b10010101

Position	7	6	5	4	3	2	1	0
Bit	1	0	0	1	0	1	0	1
Valeur	128	64	32	16	8	4	2	1
=	128	0	0	16	0	4	0	1

= 149

- hexadécimal → décimal
 - 0xCAFE

Position	3	2	1	0
Chiffre	C (12)	A (10)	F (15)	E (14)
Valeur	4096	256	16	1
=	49152	2560	240	14

= 51966

A Ton

Exercice: conversion vers décimal

- binaire → décimal
 - 0b11001011

Position	7	6	5	4	3	2	1	0
Bit	1	1	0	0	1	0	1	1
Valeur	128	64	32	16	8	4	2	1
=								

- hexadécimal → décimal
 - 0xFACE

Position	3	2	1	0
Chiffre	F	Α	С	Е
Valeur	4096	256	16	1
=				

Thiors non

Exercice: conversion vers décimal

- binaire → décimal
 - 0b11001011

Position	7	6	5	4	3	2	1	0
Bit	1	1	0	0	1	0	1	1
Valeur	128	64	32	16	8	4	2	1
=	128	64	0	0	8	0	2	1

$$= 203$$

- hexadécimal → décimal
 - 0xFACE

Position	3	2	1	0
Chiffre	F	А	С	Е
Valeur	4096	256	16	1
=	61440	2560	192	14

= 64 206

Conversion: décimal -> hexadécimal

• 23147 = 0x?

23147	16		
-23136	1446	16	
11 (B)	-1440	90	16
	6	-80	5
		10 (A)	

• 23147 = 0x5A6B