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1 Abstract

A new technique is presented for the metamorphosis of one digital
image into another. The approach gives the animator high-level
control of the visual effect by providing natural feature-based spec-
ihcation and interaction. When used eftectively. this technique can
give the illusion that the photographed or computer generated sub-
Jjeets are transforming in a fluid, surrealistic, and often dramatic way.
Comparisons with existing methods are drawn, and the advantages
and disadvantages of cach are examined. The new method is then
extended to accommodate keyframed transformations between im-
age sequences for motion image work. Several examples are illus-
trated with resulting images.

Keywords: Computer Amimation, Interpolation. Image Processing.
Shape Transtormation.

2 Introduction

2.1 Conventional Metamorphosis Techniques
Metamorphosis between two or more images over time is a useful
visual technique, often used tor educational or entertainment pur-
poses. Traditional filmmaking techniques for this effect include
clever cuts (such as a character exhibiting changes while running
through a forest and passing behind several trees) and optical cross-
dissolve. in which one image is faded out while another is simulta-
neously faded in (with makeup change. appliances, or object substi-
tution). Several classic horror films illustrate the process; who could
forget the hair-raising transformation of the Woltman, or the dra-
matic metamorphosis from Dr. Jekyll to Mr. Hyde? This paper
presents i contemporary solution to the visual transformation prob-
len.

Taking the cutting approach to the Himit gives us the technigue of
stop-motion animation. in which the subject is progressively trans-
formed and photographed one frame at a time. This process can give
the powerful illusion of continuous metamorphosis, but it requires
much skill and is very tedious work. Moreover. stop-motion usually
suffers from the problem of visual strobing by not providing the
motion blur normally assoctated with moving film subjects. A mo-
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tion-controlled variant called go-motion (in which the frame-by-
frame subjects are photographed while moving) can provide the
proper motion blur to create amore natural effect. but the complexity
of the models. motion hardware. and required skills becomes even
ereater.

2.2 3D Computer Graphics Techniques

We can use technology in other ways to help build a metamorphosis
100l. For example, we c¢an use computer graphics to model and
render images which transform over time.

One approach involves the representation of a pair of three-dimen-
sional objects as a collection of polygons. The vertices of the first
object are then displaced over time to coincide in position with
corresponding vertices of the second object, with color and other
attributes similarly interpolated. The chiet problem with this tech-
nique is the difficulty in establishing a desirable vertex correspon-
dence: this often imposes inconvenient constraints on the geometric
representation of the objects, such as requiring the same number of
polygons in each model. Even if these conditions are met. problems
still arise when the topologies of the two objects differ (such as when
one object has a hole through it), or when the features mustmove in
a complex way (such as sliding along the object surface from back
to front). This direct point-interpolation technique can be effective,
however, for transtormations in which the data correspondence and
interpolation paths are simple. For example, the technique was
successtully used for the interpolation of a regular grid ot 3D
scanned data in ~Star Trek 1V: The Voyage Home™ [13]. Methods
tfor automatically generating corresponding vertices or polygons for
interpolation have been developed. [5]16]

Other computer graphics techniques which can be used for object
metamorphosis include solid deformations [ 1] {12] and particle
systems [10]. In each case the 3D model of the first object is
transformed 1o have the shape and surface properties of the second
model. and the resulting animation is rendered and recorded.

2.3 2D Computer Graphics Techniques

While three-dimensional object metamorphosis is a natural solution
when both objects are casily modeled for the computer. often the
complexity of the subjects makes this approach impractical. For
example, many applications of the effect require transformations
between complex objects such as animals. In this case itis often
casier to manipulate scanned photographs of the scene using two-
dimensional image processing technigues than to attempt to model
and render the details of the animal’s appearance for the computer.

The simplest method for changing one digital image into another is
simply to cross-dissolve between them. The color of cach pixel is
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interpolated over time from the first image value to the correspond-
ing second image value. While this method is more flexible than the
traditional optical approach (simplifying, for example, different
dissolve rates in different image areas), it is still often ineffective for
suggesting the actual metamorphosis from one subject to another.
This may be partially due to the fact that we are accustomed to seeing
this visual device used for another purpose: the linking of two shots,
usually signifying a lapse of time and a change in place [7].

Another method for transforming one image into another is to use a
two-dimensional “particle system” to map pixels from one image
onto pixels from the second image. As the pixel tiles move over time
the first image appears to disintegrate and then restructure itself into
the second image. This technique is used in several video effects
systems (such as the Quantel Mirage) [11].

Another transformation method involves image warping so that the
original image appears to be mapped onto a regular shape such as a
plane or cylinder. This technique has limited application towards the
general transformations under consideration in this paper, but has
the advantage of several real-time implementations for video (such
as the Ampex ADO) [11]. Extensions include mapping the image
onto a free-form surface; one system has even been used for real-
time animation of facial images [8].

Other interesting image warps have been described by Holzmann
[3} [4], Smith [14], and Wolberg[16].

2.4 Morphing

We use the term “morphing” to describe the combination of gener-
alized image warping with a cross-dissolve between image ele-
ments. The term is derived from “image metamorphosis” and should
not be confused with morphological image processing operators
which detect image features. Morphing is an image processing
technique typically used as an animation tool for the metamorphosis
from one image to another. The idea is to specify a warp that distorts
the first image into the second. Its inverse will distort the second
image into the first. As the metamorphosis proceeds, the first image
is gradually distorted and is faded out, while the second image starts
out totally distorted toward the first and is faded in. Thus, the early
images in the sequence are much like the first source image. The
middle image of the sequence is the average of the first source image
distorted halfway toward the second one and the second source
image distorted halfway back toward the first one. The last images
in the sequence are similar to the second source image. The middle
image is key; if it looks good then probably the entire animated
sequence will look good. For morphs between faces, the middle
image often looks strikingly life-like, like a real person, but clearly
it is neither the person in the first nor second source images.

The morph process consists of warping two images so that they have
the same “shape”, and then cross dissolving the resulting images.
Cross-dissolving is simple; the major problem is how to warp an
image.

Morphing has been used as a computer graphics technique for at
least a decade. Tom Brigham used a form of morphing in experi-
mental art at NYIT in the early 1980’s. Industrial Light and Magic
used morphing for cinematic special effects in Willow and Indiana
Jones and the Last Crusade. All of these examples are given in
Wolberg’s excellent treatise on the subject[15].

Wolberg’s book effectively covers the fundamentals of digital image
warping, culminating in amesh warping technique which uses spline
mapping intwo dimensions. This technigue is both fast and intuitive;
efficient algorithms exist for computing the mapping of each pixel
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from the control grid, and a rubber-sheet mental model works effec-
tively for predicting the distortion behavior. It will be compared to
our technique in detail below.

2.5 Field Morphing

We now introduce a new technique for morphing based upon fields
of influence surrounding two-dimensional control primitives. We
call this approach “field morphing” but will often simply abbreviate
to “morphing” for the remainder of this paper.

3 Mathematics of Field Morphing

3.1 Distortion of a Single Image

There are two ways to warp an image [15]. The first, called forward
mapping, scans through the source image pixel by pixel, and copies
them to the appropriate place in the destination image. The second,
reverse mapping, goes through the destination image pixel by pixel,
and samples the correct pixel from the source image. The most
important feature of inverse mapping is that every pixel in the
destination image gets set to something appropriate. In the forward
mapping case, some pixels in the destination might not get painted,
and would have to be interpolated. We calculate the image deforma-
tion as a reverse mapping. The problem can be stated “Which pixel
coordinate in the source image do we sample for each pixel in the
destination image?”

3.2 Transformation with One Pair of Lines

A pair of lines (one defined relative to the source image, the other
defined relative to the destination image) defines a mapping from
one image to the other. (In this and all other algorithms and equa-
tions, pixel coordinates are BOLD UPPERCASE ITALICS, lines
are specified by pairs of pixel coordinates(PQ), scalars are bold
lowercase italics, and primed variables (X', u") are values defined
relative to the source image. We use the term /ine to mean a directed
line segment.)

A pair of corresponding lines in the source and destination images
defines a coordinate mapping from the destination image pixel
coordinate X to the source image pixel coordinate X' such that for a
line PQ in the destination image and P'Q" in the source image.

X-P) (Q-
u:( ) - (@-P) )

Q- PI*
(X-P) - Perpendicular (Q — P)
' 2)
Q- Pil
X = Pau. (@ -p) 4 FePerdicular (@' -F) o

Q" - Pl

where Perpendicular( ) returns the vector perpendicular to, and the
same length as, the input vector. (There are two perpendicular
vectors; either the left or right one can be used, as long as it is
consistently used throughout.)

The value u is the position along the line, and v is the distance from
the line. The value u goes from 0 to 1 as the pixel moves from P to
Q. and is less than O or greater than | outside that range. The value
for v is the perpendicular distance in pixels from the line. If there is
Jjust one line pair, the transformation of the image proceeds as
follows:
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For each pixel X in the destination image
find the corresponding u,v
find the X' in the source image for that u,v
destinationlmage(X) = sourcelmage(X")

L@
v X
u
P p
Destination Image Source Image

Figure 1: Single line pair

In Figure 1. X' is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P'Q’. and at a proportion u along that line.

The algorithm transforms each pixel coordinate by a rotation, trans-
lation, and/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
by the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines. The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

4

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
in the upper right image, translated in the lower left image. and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position X;’ is calculated for each pair of lines. The
displacement D; = X;' - X is the difference between the pixel location
in the source and destination images, and a weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line. This average displacement is added to
the current pixel location X to determine the position X' to sample
in the source image. The single line case falls out as a special case
of the multiple line case, assuming the weight never goes to zero
anywhere in the image. The weight assigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation we use is

) b
weight = length” ) (4)

(a+dist)

where length is the length of a line, dist is the distance’ from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

[f a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp-
ing, but with less precise control. The variable b determines how the
relative strength of different lines falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. If b is
zero, then each pixel will be affected by all lines equally. Values of
b in the range [0.5, 2] are the most useful. The value of p is typically
in the range [0, 1]; if it is zero, then all lines have the same weight,
if it is one, then longer lines have a greater relative weight than
shorter lines.

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0))
weightsum = ()
For each line P; Q;
calculate u,v based on P; Q;
calculate X’; based on u,v and P;'Q;’
calculate displacement D; = X;' - X; for this line
dist = shortest distance from X to P; Q;
weight = (length® | (a + dist))”
DSUM += D; * weight
weightsum += weight
'= X + DSUM [ weightsum
destinationImage(X) = sourcelmage(X")

+ Note that because these “lines™ are directed line segments, the
distance from a line to a point is abs(v) if 0 < u < |, the distance from
P to the point if 4 < 0, and the distance from Q to the point if u > 1.
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Figure 3: Multiple line pairs

In the above figure, X" is the location to sample the source image for
the pixe! at X in the destination image. That location is a weighted
average of the two pixel locations X' and X", computed with
respect to the first and second line pair, respectively.

If the value a is set 10 zero there is an undefined result if two lines
cross. Each line will have an infinite weight at the intersection point.
We quote the line from Ghostbusters: “Don’t cross the streams.
Why? It would be bad.” This gets the point across, and in practice
does not seem to be too much of a limitation. The animator’s mental
model when working with the program is that each line has a field
of influence around it, and will force pixels near it to stay in the
corresponding position relative to the line as the line animates. The
closer the pixels are to a line, the more closely they follow the motion
of that line, regardless of the motion of other lines. This mental
model gives the animator a good intuitive feel for what will happen
as he designs a metamorphosis.

T T

Figure 4: Multiple line paif example

With two or more lines, the transformation is not simple. The figure
on the left is the original image, it is distorted by rotating the line
above the F around its first point. The whole image is distorted by
this transformation. It is still not possible to do a uniform scale or a
shear with multiple lines. Almost any pair of lines results in a non-
affine transformation. Still, it is fairly obvious to the user what
happens when lines are added and moved. Pixels near the lines are
moved along with the lines, pixels equally far away from two lines
are influenced by both of them.

3.4 Morphing Between Two Images

A morph operation blends between two images, /0 and /1. To do
this, we define corresponding lines in /0 and //. Each intermediate
frame / of the metamorphosis is defined by creating a new set of line
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segments by interpolating the lines from their positions in /O to the
positions in /1. Both images /0 and /1 are distorted toward the
position of the lines in /. These two resulting images are cross-
dissolved throughout the metamorphosis, so that at the beginning,
the image is completely /0 (undistorted because we have not yet
begun to interpolate away from the line positions associated with
10). Halfway through the metamorphosis it is halfway between /0
and 7/, and finally at the end it is completely //. Note that there is a
chance that in some of the intermediate frames, two lines may cross
even if they did not cross in the source images.

We have used two different ways of interpolating the lines. The first
way is just to interpolate the endpoints of each line. The second way
is to interpolate the center position and orientation of each line, and
interpolate the length of each line. In the first case, a rotating line
would shrink in the middle of the metamorphosis. On the other hand,
the second case is not very obvious to the user, who might be
surprised by how the lines interpolate. In any case, letting the user
see the interpolated position helps him design a good set of begin-
ning and end positions.

3.5 Performance

For video-resolution images (720x486 pixels) with 100 line pairs,
this algorithm takes about 2 minutes per frame on a SGI 4D25. The
runtime is proportional to the number of lines times the number of
pixels in the image. For interactive placement of the lines, low
resolution images are typically used. As is usually the case with any
computer animation, the interactive design time is the dominant
time; it often takes 10 times as long to design a metamorphosis than
to compute the final frames.

4 Advantages and Disadvantages of this Tech-
nique

This technique has one big advantage over the mesh warping tech-
nique described in Wolberg’s book[15]: it is much more expressive.
The only positions that are used in the algorithm are ones the
animator explicitly created. For example, when morphing two faces,
the animator might draw line segments down the middle of the nose,
across the eyes, along the eyebrows, down the edges of the cheeks,
and along the hairline. Everything that is specified is moved exactly
as the animator wants them moved, and everything else is blended
smoothly based on those positions. Adding new line segments in-
creases control in that area without affecting things too much every-
where else.

This feature-based approach contrasts with the mesh warping tech-
nique. In the simplest version of that algorithm, the animator must
specify in advance how many control points to use to control the
image. The animator must then take those given points and move
them to the correct locations. Points left unmodified by mistake or
points for which the animator could not find an associating feature
are still used by the warping algorithm. Often the animator will find
that he does not have enough control in some places and too much
in others. Every point exerts the same amount of influence as each
of the other points. Often the features that the animator is trying to
match are diagonal, whereas the mesh vertices start out vertical and
horizontal, and it is difficult for the animator to decide which mesh
vertices should be put along the diagonal line.

We have found that trying to position dozens of mesh points around
is like trying to push a rope; something is always forced where you
don’t want it to go. With our technique the control of the line
segments is very natural. Moving a line around has a very predict-
able effect. Extensions of the mesh warping technique to allow
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refinement of the mesh would make that technique much more
expressive and useful[2].

Another problem with the spline mesh technique is that the two-pass
algorithm breaks down for large rotational distortions (bottleneck
problem)[ 14]| 15}. The intermediate image in the two pass algorithm
might be distorted to such an extent that information is lost. It is
possible do mesh warping with a one-pass algorithm that would
avoid this problem.

The two biggest disadvantages of our feature-based technique are
speed and control. Because it is global, all line segments need to be
referenced for every pixel. This contrasts with the spline mesh,
which can have local control (usually the 16 spline points nearest
the pixel need be considered).

Between the lines, sometimes unexpected interpolations are gener-
ated. The algorithm tries to guess what should happen far away from
the line segments: sometimes it makes a mistake. This problem
usually manifests itself as a “ghost™ of a part of the image showing
up in some unrelated part of the interpolated image, caused by some
unforeseen combination of the specified line segments. A debugging
tool can be useful in this case. in which the user can point to a pixel
in the interpolated image and the source pixel is displayed, showing
where that pixel originated. Using this information, the animator can
usually move a line or add a new one to fix the problem.

Figure 6: Ghostbusting

In Figure 6. the top left image is the original. Moving the horizontal
line down creates a ghost above the line. that is made from pixels
copied from the top edge of the F. The bottom left image shows one
fix. shrinking the vertical line to match the horizontal one. If the
vertical line must maintain its length for some other reason, then the
ghost can be eliminated by breaking the vertical line into two parts,
as shown on the lower right.

5 Animated Sequences

It is often useful to morph between two sequences of live action,
rather than just two still images. The morph technique can easily be
extended to apply to this problem. Instead of just marking corre-
sponding features in the two images. there needs to be a set of line
segments at key frames for each sequence of images. These sets of
segments are interpolated to get the two sets for a particular frame,

and then the above two-image metamorphosis is performed on the
two frames, one from each strip of live action. This creates much
more work for the animator, because instead of marking features in
just two images he will need to mark features in many key frames
in two sequences of live action. For example. in a transition between
two moving faces, the animator might have to draw a line down the
nose in each of 10 keyframes in both sequences, requiring 20 indi-
vidual line segments. However, the increase in realism of metamor-
phosis of live action compared to still images is dramatic, and worth
the effort. The sequences in the Michael Jackson video, Black or
White, were done this way.

6 Resuilts

We have been using this algorithm at Pacific Data Images for the
last two years. The first projects involved interpolation of still
images. Now, almost all of the projects involve morphing of live-
action sequences.

While the program is straightforward and fun to use, it still requires
a lot of work from the animator. The first project using the tool, (the
Plymouth Voyager metamorphosis), involved morphs between nine
pairs of still images. It took three animator-weeks to complete the
project. While it was very quick to get a good initial approximation
of a transition, the final tweaking took the majority of the time. Of
course, it was the first experience any of us had with the tool, so
there was some learning time in those three animator-weeks. Also,
a large amount of time was spent doing traditional special effects
work on top of the morph feature matching. For example, the images
had to be extracted from the background (using a digital paint
program), some color balancing needed to be done, and the fore-
ground elements had to be separated form each other (more paint-
ing). These elements were morphed separately, then matted together.
On current morph production jobs at PDI, we estimate that about
20-40 percent of the time is spent doing the actual metamorphosis
design, while the rest of the time is used doing traditional special
effects.
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Figure 7

Figure 8

Figure 10

Figure 7 shows the lines drawn over the a face. figure 9 shows the
lines drawn over a second face. Figure 8 shows the morphed image.
with the interpolated lines drawn over it.

Figure 10 shows the first face with the lines and a grid. showing how
it is distorted to the position of the lines in the intermediate frame.
Figure 11 shows the second face distorted to the same intermediate
position. The lines in the top and bottom picture are in the same
position. We have distorted the two images to the same “shape™.

Note that outside the outline of the faces. the grids are warped very
differently in the two images. but because this is the background. it
is not important. If there were background features that needed to
be matched. lines could have been drawn over them as well.

40 Figure 9

Figure 11
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Figure 12 Figure 14

Figure 121s the first face distorted to the intermediate position.
without the grid or lines. Figure 13 is the second face distorted
toward that same position. Note that the blend between the two
distorted images is much more life-like than the either of the distoit-
ed images themselves. We have noticed this happens very frequent-
ly

The final sequence is figures 14,15, and 16.

Figure 15

41

Figure 13 Figure 16
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Figure 17
A sequence from Michael Jackson’s Black or White

(Courtesy MJJ Productions)




