
7. Mélange d'images

Nombre de participants : 18

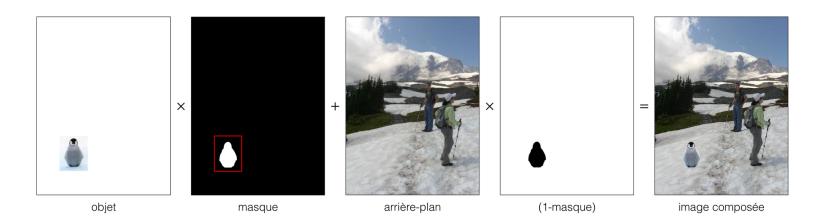
Objectif

Comment prendre un objet et l'insérer dans une nouvelle image?

Crédit : Derek Hoiem

Objectif

Comment prendre un objet et l'insérer dans une nouvelle image?

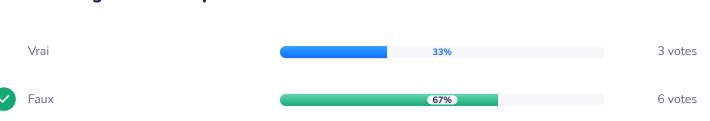

Crédit : Derek Hoiem

9

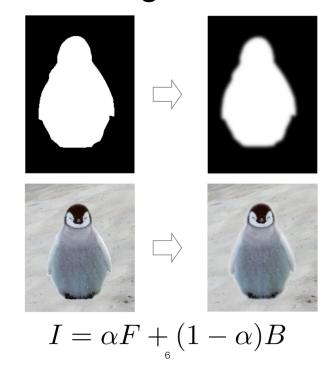
1. Étant donné deux images i1 et i2 ainsi qu'un masque m, écrivez l'équation de composition.

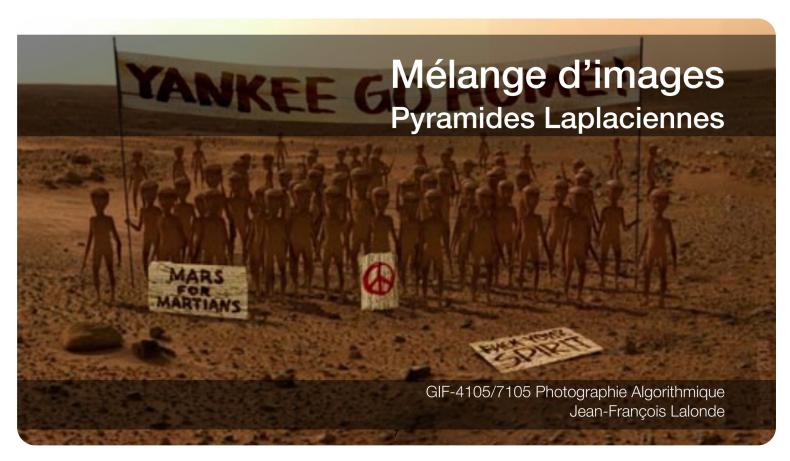
-b +-sqrt(b^2-4ac)/2a
alpha*F + (1-alpha)*B
i1 * m + i2 * (1-m)
m*i1+(1-m)*i2
i_1 * m + i_2 * (1 - m)
i1 * m + i2 * (1-m)
Alphaf1 + (1-alpha)f2
m*i1+(1-m)*i2
i1*m+i2*(1-m)
m*i1 + (m-1)*i2

Composition simple: copier-coller


$$I = \alpha F + (1 - \alpha)B$$

Crédit : Derek Hoiem


Vrai ou faux : effectuer une composition avec dégradé


2. modifie l'équation de composition car il faut tenir compte du dégradé du masque.

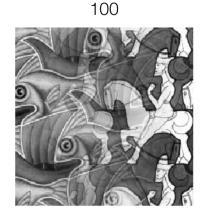
6 bonnes réponses sur 9 répondants

Composition avec dégradé

Quel niveau de dégradé?

1

Dégradé rapide

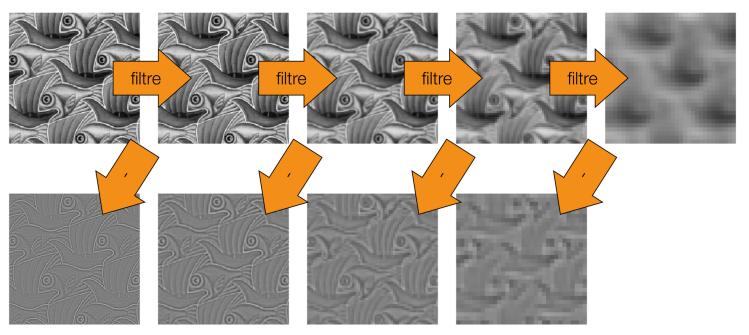

Aucun fantôme (ghosting)

Dégradé équivaut aux variations les plus **rapides** dans l'image

Dégradé lent

Aucune discontinuité

Dégradé équivaut aux variations les plus **lentes** dans l'image



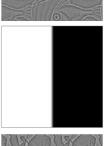
Idée : ajuster le dégradé pour chaque type de variation dans l'image.

Variation = contenu fréquentiel!

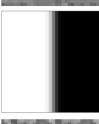
8

Décomposition en « bandes de fréquences »

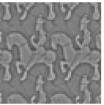
Pile Laplacienne!



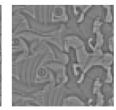
10


Mélange par pile Laplacienne : récapitulation

- Construire la pile laplacienne de l'image 1
- 3. Construire la pile gaussienne du masque
- 2. Construire la pile laplacienne de l'image 2







Mélange par pile Laplacienne : récapitulation

4. Composer les piles

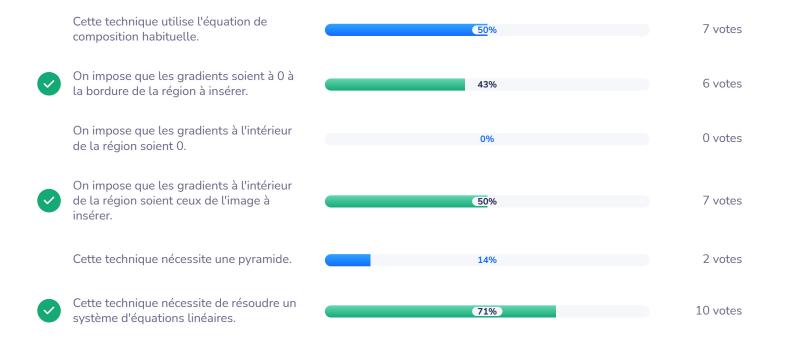
4. Comment peut-on reconstruire l'image à partir de sa pile laplacienne ?


en additionnant			
Somme de la pile et du masque			
Addition			
on les recompile en sens inverse ou quelque chose du genre			
Addition des éléments de la pile			
on somme tout			
somme des différents niveaux			
somme des niveaux de la pile			
Addition			
somme			

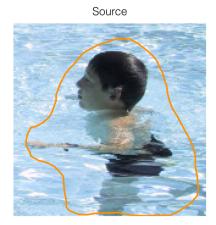
Mélange par pile Laplacienne : récapitulation

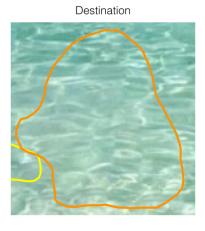
4. Composer les piles

5. Reconstruire l'image



13



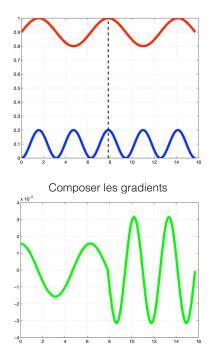

Identifiez tous les énoncés qui se rapportent à la composition dans le domaine des gradients.

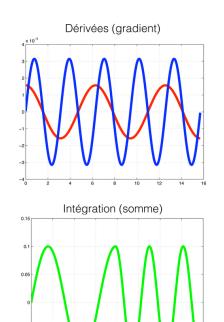
0 bonne réponse sur 14 répondants

Idée : imposer des contraintes sur les gradients de l'image

Discontinuité:

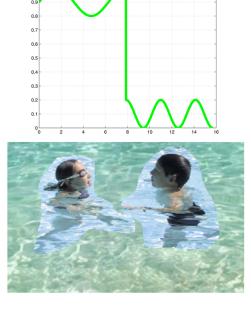
La **variation** d'intensité de part et d'autre de la bordure

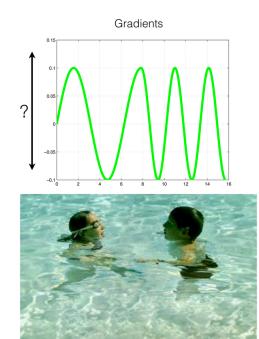

2 objectifs:


Pas de discontinuité
 gradients de l'image résultante = 0

2. Préserver le contenu de l'image source

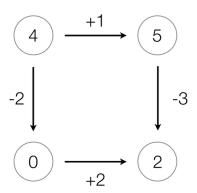
gradients de l'image résultante = gradients de l'image source


Exemple 1D



16

Exemple 1D



Intensité

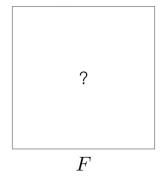
En 2D? Pas si facile...

Somme sur une boucle ≠ 0 : pas intégrable

Malheureusement, cela arrive constamment en pratique!

18

Rappel: gradients d'une image


 g_y

$$g_x(x,y) = I(x+1,y) - I(x,y)$$

$$g_y(x, y) = I(x, y + 1) - I(x, y)$$

Reconstruire une image à partir de gradients?

 $g_x(x,y) = F(x+1,y) - F(x,y)$

$$g_y(x,y) = F(x,y+1) - F(x,y)$$

20

F(0,0)	F(1,0)	F(2,0)
F(0,1)	F(1,1)	F(2,1)

$$g_x(0,0)$$
 $g_x(1,0)$ $g_x(2,0)$ $g_x(0,1)$ $g_x(1,1)$ $g_x(2,1)$

$$g_y(0,0)$$
 $g_y(1,0)$ $g_y(2,0)$ $g_y(0,1)$ $g_y(1,1)$ $g_y(2,1)$

$$F(0,0)$$
 $F(0,1)$ $F(0,2)$ \cdots $F(1,0)$ $F(1,1)$ $F(1,2)$ \cdots

 \mathbf{A}

$$\begin{bmatrix}
F(0,0) \\
F(0,1) \\
F(0,2) \\
\vdots \\
F(1,0) \\
F(1,1) \\
\vdots
\end{bmatrix} = \begin{bmatrix}
g_x(0,0) \\
g_x(0,1) \\
\vdots \\
g_y(0,0) \\
g_y(0,0) \\
\vdots \\
\vdots \\
\vdots$$

Comment trouver F

Nous avons un système d'équations linéaires de la forme

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

où **A** est « sous-contraint » (car on peut ajouter n'importe quelle constante à **x**!)

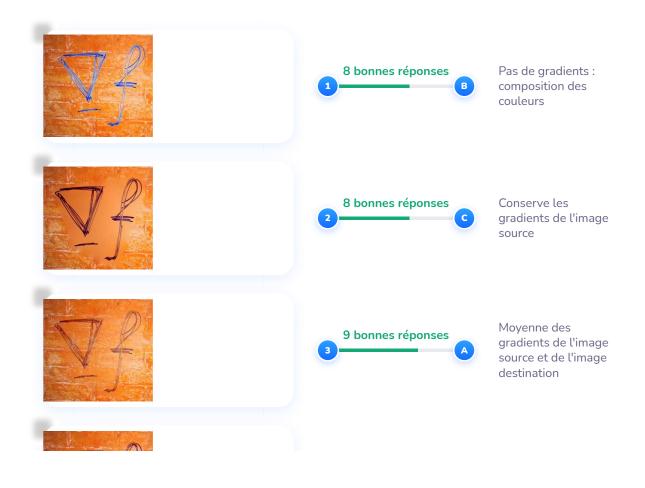
• En python, on peut le résoudre avec la fonction

from scipy import linalg
x = linalg.lstsq(A, b)

qui trouve le **x** qui minimise

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$$

22


Résultats

23 Perez et al. 200?

On veut composer le symbole de l'image source dans 6. l'image destination. Associez les résultats à la stratégie employée.

ients choisir?

Copie basée sur la couleur

Gradients

Gradients + moyenne

24 Perez et al. 200?