8. Transformations d'images

Nombre de participants : 15

Transformations globales (paramétriques)

• Une transformation T modifie les coordonnées des pixels :

$$\mathbf{p}' = T(\mathbf{p})$$

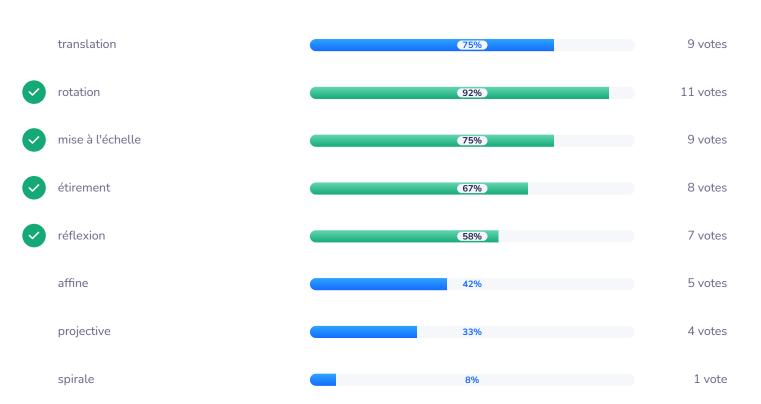
- Pourquoi « globale »?
 - La même transformation est appliquée à chaque point
- Pourquoi « paramétrique »?
 - Peut être représentée par un faible nombre de paramètres

Transformations linéaires

 Pour qu'une transformation soit linéaire, il faut qu'on puisse la représenter avec une matrice:

$$\mathbf{p}' = \mathbf{M}\mathbf{p}$$
 $\left[egin{array}{c} x' \ y' \end{array}
ight] = \mathbf{M} \left[egin{array}{c} x \ y \end{array}
ight]$

3 bonnes réponses sur 12 répondants



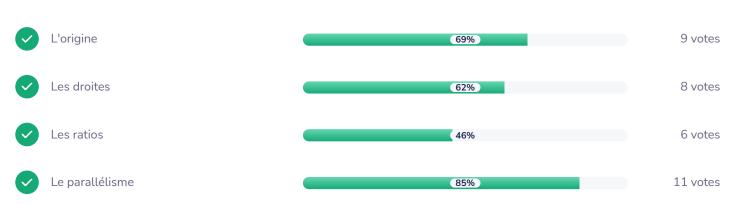
Transformations linéaires

- Toutes les transformations linéaires sont des combinaisons de:
 - échelle, rotation, étirement, réflexion

$$\left[\begin{array}{c} x'\\y'\end{array}\right] = \left[\begin{array}{cc} a & b\\c & d\end{array}\right] \left[\begin{array}{c} x\\y\end{array}\right]$$

5

2 bonnes réponses sur 13 répondants



Transformations linéaires

- Toutes les transformations linéaires sont des combinaisons de:
 - échelle, rotation, étirement, réflexion

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

- Propriétés
 - Origine ne change pas
 - Sont préservées : lignes, lignes parallèles, ratios, droites
 - La composition de transformations linéaires est une transformation linéaire

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} e & f \\ g & h \end{array}\right] \left[\begin{array}{cc} i & j \\ k & l \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

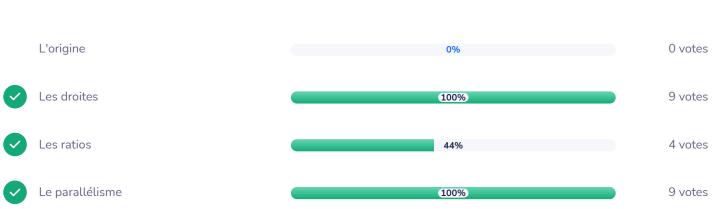
Coordonnées homogènes

• Représente des coordonnées 2-D avec un vecteur à 3 éléments

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \qquad \xrightarrow{\text{Point 2D}} \qquad \left[\begin{array}{c} x/w \\ y/w \end{array}\right]$$

8

4 bonnes réponses sur 9 répondants



Transformations affines

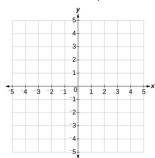
- Les transformées affines sont des combinaisons de:
 - échelle, rotation, étirement, réflexion et translations

bonne réponse

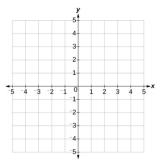
Transformations affines

Combien de degrés de liberté?

- Les transformées affines sont des combinaisons de:
 - échelle, rotation, étirement, réflexion et translations
- Propriétés
 - Sont préservées : origine, lignes parallèles, ratios, droites
 - La composition de plusieurs transformations affines est une transformation affine



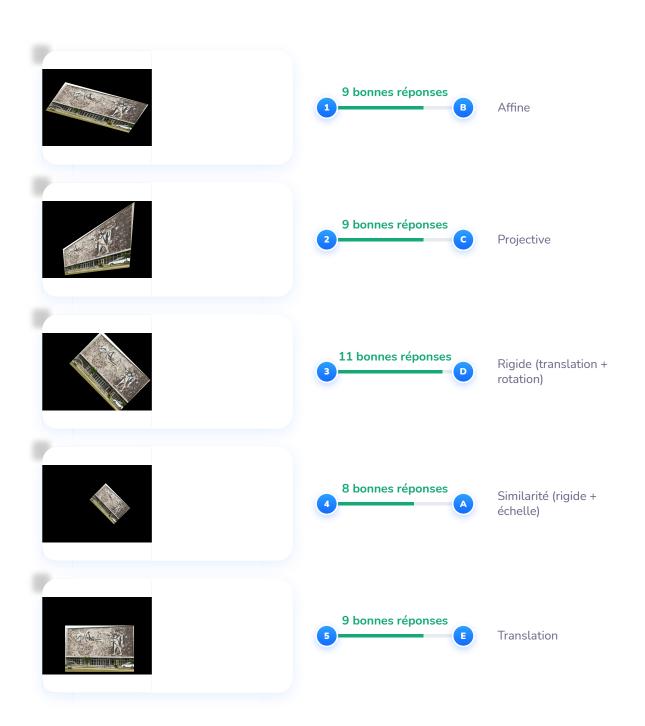
$$\left[\begin{array}{c} x'\\y'\\1\end{array}\right] = \left[\begin{array}{ccc} a & b & c\\d & e & f\\0 & 0 & 1\end{array}\right] \left[\begin{array}{c} x\\y\\1\end{array}\right]$$



10

L'image suivante est déformée par diverses
5. transformations. Associez le résultat au type de transformation.

12 répondants



Survol

transformations linéaires (en coords. homogènes)

Dans chaque famille, la composition et l'inverse font également partie de la même famille.

Translation $[\mathbf{I} \mid \mathbf{t}]_{2\times 3}$

Rigide (euclidienne) $[\mathbf{R} \mid \mathbf{t}]_{2\times3}$

Similarité $[\ s\mathbf{R}\ |\ \mathbf{t}\]_{2\times 3}$

Affine $[\mathbf{A}]_{2\times 3}$

Projective $\begin{bmatrix} \tilde{\mathbf{H}} \end{bmatrix}_{3 \times 3}$

2 DDL orientations, longueurs, angles, parallélisme, droites

3 DDL
orientations, longueurs,
angles, parallélisme,
droites

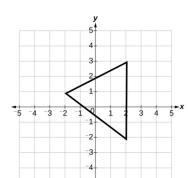
4 DDL orientations, longueurs, angles, parallélisme, droites

6 DDL
orientations, longueurs,
angles, parallélisme,
droites

8 DDL orientations, longueurs, angles, parallélisme, droites

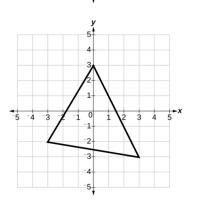
Transformation affine

$$x'_{i} = ax_{i} + by_{i} + c$$
$$y'_{i} = dx_{i} + ey_{i} + f$$



$$a$$
 b c d e f

$$\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e \\
 f
\end{bmatrix} = \begin{bmatrix}
 a \\
 c
\end{bmatrix}$$



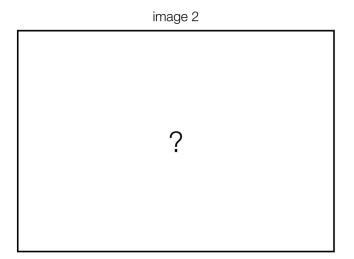
6 équations, 6 inconnues

Déformation d'image

Hypothèse : les bordures de l'image ne changent pas

• Étant données une image et une transformation **T**, comment calculer l'image déformée?

image 1



Idée 2 : transformation inverse

Approche privilégiée!

 Pour chaque pixel dans l'image 2, calculer sa position dans l'image 1 (selon la transformation inverse!)

