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Abstract. Chromatic aberration is a form of aberration in color optical
devices that produces undesirable color fringes along borders within im-
ages. It is becoming a more critical problem these days as digital cam-
eras are getting smaller, while the number of picture elements is increas-
ing. We propose a novel method for detecting and eliminating chromatic
aberration using image processing. We first analyze the color behavior
on edges that do not show chromatic aberration and propose a range
limitation for color difference signals. When pixels violate the preceding
condition, they can be considered as color fringes caused by chromatic
aberration. Corrected pixel values are generated to eliminate the chro-
matic aberrations. The proposed algorithm corrects both lateral and lon-
gitudinal aberration in an image, and experimental results are provided

to demonstrate its efficacy. © 2010 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.3455506]
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1 Introduction

Every optical system that uses lenses suffers from aberra-
tions that occur due to the refractive characteristics of the
lenses.' Chromatic aberration is one type of aberration in
color optical devices. It is well known that visible light is
made of a spectrum of colors and when these colors go
through a lens, they all have their unique indices of refrac-
tion. Thus, the colors bend at slightly different angles as
they reach the image plane. There are two forms of chro-
matic aberration:” lateral aberration and longitudinal aber-
ration. In lateral aberration, all the color components are
well focused on the image plane, but displacement or geo-
metric shift between each color component occurs. In lon-
gitudinal aberration, the different foci for each color com-
ponent cause color blurs in the acquired image. Figure 1(a)
shows an image acquired with a digital single lens reflex
(DSLR) camera that has been degraded with both types of
aberration simultaneously. In Fig. 1(b), an enlarged image
of the top one-third of Fig. 1(a), we can easily identify the
thin red color fringes in the bottom part of the area marked
A. And above these red fringes, thick blue fringes are also
visible. Observing the RGB intensity along the vertical dot-
ted line in Fig. 1(b) [see Fig. 1(c)], the thin red color
fringes are produced because the red signal has been geo-
metrically shifted for about 2 pixels due to lateral aberra-
tion. In contrast, the thick blue fringes for about 8 pixels of
width are created because the blue signal in this edge has
been blurred due to longitudinal aberration. From this ex-
ample, although the effects of each aberration are very dif-
ferent, it can be determined that both aberrations produce
similar color fringes along the edges of an image in either
case.>® Chromatic aberration is becoming a more serious
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problem these days as digital cameras are getting smaller,
while the number of picture elements is increasing.

Optimal lens design techniques(’_'l have been proposed
to reduce chromatic aberration. These approaches alleviate
chromatic aberration by using multiple lenses with different
optical indices, e.g., the achromatic doublet,12 or by im-
proving the lens characteristics.” These corrections, how-
ever, have been effective only for the zones near the optical
axis, and these hardware solutions can be used only in large
cameras and increase their cost.

Because of the high cost of the lens design solutions,
active lens control systemsm’14 have been studied to deal
with chromatic aberration. The purpose of the active lens
control is to get the best focused image for each color com-
ponent by slightly shifting the image plane forward and
backward for each color. This solution requires a priori
knowledge about the magnification factor and the image
plane shift degree.13

As alternatives to these hardware approaches, algorithms
using image processing have been suggested.4’157 ¥ These
image processing algorithms concentrate on reducing only
the lateral aberration, so the effects of the longitudinal ab-
erration remain. They also need to estimate the center point
of the aberration for accurate correction while assuming
that the aberration center is only the center of the acquired
image. The aberration center is often different from the
image center due to the complexity of multilens systems.19
Most of these methods require a priori information, such as
the precalibrated test pattern information or the camera set-
ting information like the focal length at the time the image
was acquired.

Recently, an algorithm correcting chromatic aberration
using only a single degraded image % has been suggested.
This method first models the whole process of the imaging
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Fig. 1 Degraded image acquired with a DSLR camera. (a) Image of size 1536 X 2048 pixels. (b)
Enlarged image of the top one-third of (a) (approximately 10-pixel width of color fringes are found in
the area marked A). (c) RGB intensity along vertical dotted line of (b). (Color online only.)

pipeline and then estimates every simplified step of the
pipeline to correct both the lateral and longitudinal aberra-
tion.

Other algorithms for measurement and elimination of
chromatic aberration in microscope implementation have
been proposed.ZI_24 However, these techniques are not ap-
plicable to the ordinary camera imaging system.

In spite of the many effective methods available, faster
and simpler algorithms are still necessary for many appli-
cations such as low-cost digital web cameras or cellular
phones with built-in cameras. In this paper, we propose an
image processing method that removes color fringes, re-
gardless of whether they were caused by lateral or longitu-
dinal aberration, for a single degraded image. This method
exploits an observation that the color intensity of the red

and blue signals are degraded due to the fact that cameras
are typically focused on the green signal. We first analyze
the color behavior related to the color difference signals on
edges that do not show chromatic aberration and propose a
condition for the color difference signals on those edges.
When the pixels violate the preceding condition, they can
be considered as color fringes caused by chromatic aberra-
tion. Then, an output pixel value is calculated to eliminate
the color fringes. Because the algorithm requires no a pri-
ori knowledge, it can be easily applied to any image.

This paper is organized as follows. In Sec. 2, we suggest
a range limitation condition for the color difference signals
on edges by analyzing the color behavior on normal edges
without chromatic aberration. In Sec. 3, the details of our
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Fig. 2 Color behavior on a normal edge. (a) An edge without chromatic aberration. (b) RGB intensity
along horizontal line of (a). (c) Color difference signal between the red and the green components. (d)
Color difference signal between the blue and the green components. (Color online only.)

processing methods using the proposed range limitation
condition are described. Experimental results are presented
in Sec. 4, and last, Sec. 5 is the conclusion.

2 Color Behavior on Edges

Every edge has a transition region where color variation
occurs. Suppose that p is a pixel location inside the transi-
tion area (see Fig. 2). The transition region can be defined
as the area in which the RGB color state varies from (226,
210, 200) to (71, 30, 40). Starting from the left side, we can
define the pixel location where color state starts to vary as
I(p) and the pixel location where color state stops varying
as r(p). Then, the transition region Z(p) is derived as a set
of pixels located between I(p) and r(p). Chromatic
correlation® exists on normal edges that do not suffer chro-
matic aberration. The transition regions for each color com-
ponent have the same width and position on normal edges
[see Fig. 2(b)]. In this situation, there exists an interesting
color behavior related to color difference signals. The color
difference signals of each pixel are computed as the differ-
ence between the red (R) and the green (G) signals, and as
the difference between the blue (B) and the green (G) sig-
nals in the RGB color space. Similar to the chroma com-
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ponents usually expressed with color differences in YCbCr
color spaces, the green signal is used as a reference signal
for the difference calculation because it plays a dominant
role on the luminance. The color difference signals have a
certain property on normal edges. That is, each color dif-
ference signal in Z(p) is higher than the minimum of the
values at either I(p) or r(p), and lower than the maximum
of the values at either I(p) or r(p). We represent this prop-
erty as

min{Dg[1(p) ], Dg[r(p)]} < Dg())
< max{Dg[l(p)].Delr(p)]},

min{Dg[1(p)].Dglr(p)]} < Dy())
< max{Dg[l(p)].Dp[r(p)]}, (1)

where Dg(-)=R(-)=G(-), Dg(-)=B(-)=G(-), and j is the
pixel location in the transition region—that is, j € Z(p).
This means that the color difference signals in the transition
region are limited between the values of the corresponding
boundary pixels. We call this the color difference property
for edges.
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Fig. 3 Color behavior on a degraded edge (due to the lateral aberration): pixels violating the proposed
condition are marked with orange dotted circles in (c) and (d). (a) A degraded edge with approximately
7-pixel-width red color fringes. (b) RGB intensity along horizontal line of (a). (c) Color difference signal
between the red and the green components. (d) Color difference signal between the blue and the

green components. (Color online only.)

In contrast, the edges with chromatic aberration violate
the preceding property. Given an image with strong red
color fringes caused by chromatic aberration [see Fig. 3(a)],
plots of the RGB intensity along the horizontal direction
reveal a geometrical shift to the left in the red signal due to
lateral aberration. This aberration breaks the chromatic cor-
relation, which means that the varying locations between
each color component differ. Z(p), the transition region be-
tween the two stable color values, can be defined as the set
of pixels where at least one color component varies, or as
the union of the different color components’ transition re-
gions. The color difference signals in Figs. 3(c) and 3(d)
demonstrate that some pixels inside the transition region
violate the proposed color difference property for edges,
and we can specify that these pixels exhibit unpleasing
color fringes around the edge. Figure 4 shows the occur-
rence of the longitudinal aberration edge. As shown in Figs.
4(c) and 4(d), there also exist some pixels that violate the
proposed property so that the maximum values of the color
difference signals are found inside the transition region. A
strong blue color fringe is emphasized on the image edge
because the color differences between the blue and the
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green intensities are much larger than the differences be-
tween the red and the green intensities. Based on these
observations, we will use this color difference property for
edges to detect the aberration areas.

3 Removing Chromatic Aberration

To apply the color difference property for edges, we first
need to identify the transition regions from a given image.
The color components of an input image are denoted by
R(i,j), G(i,j), and B(i,j), where i and j represent the pixel
location in the row and the column, respectively. The varia-
tion of each color intensity is detected by a gradient opera-
tion that is based on the widely used Sobel operators. 6

Our algorithm separately processes data in the horizontal
direction and the vertical direction. For simplicity, we de-
scribe it with the horizontal direction. In the horizontal pro-
cessing, all 2-D signals can be considered as 1-D cases with
a fixed integer i as follows:

R(i.j),G(i. ), B(i.)).Ec(i.j) = R(j),G(j),B().Ec(j), ~ (2)

where
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Fig. 4 Color behavior on a degraded edge (due to the longitudinal aberration): pixels violating the
proposed condition are marked with orange dotted circles in (c) and (d). (a) A degraded edge with
approximately 12-pixel-width blue color fringes. (b) RGB intensity along horizontal line of (a). (c) Color
difference signal between the red and the green components. (d) Color difference signal between the

blue and the green components. (Color online only.)

Eqi,j)=Cli-1,j-1)+2CG,j- 1)+ C(i+1,j-1)-C(i
—1,j+1)=2C3,j+1)=C(i+1,j+1), (3)

which is the gradient value calculated with the vertical So-
bel mask and C € {R,G,B}. If the algorithm is applied for
the other direction, the vertical operation, the horizontal
Sobel mask must be used for calculating E(i,j).

3.1 Determining Transition Regions

The transition region is the union of the pixels where at
least one of the color values varies. A pixel will be identi-
fied as a part of a transition region when one of the gradient
magnitudes is larger than or equal to a positive threshold 7.
In fact, because the green signal plays a dominant role on
the luminance, the lens in most cameras is focused on the
green. Considering that the green spectrum is located in the
middle of the visible ray, focusing on the green signal is
reasonable to avoid a biased chromatic aberration. Conse-
quently, gradient values for the red and the blue includes all
geometrically shifted and blurred information that is caused
by chromatic aberration. In addition, most regions in an

Optical Engineering

067002-5

image are flat with small color variation. Hence, instead of
computing the three gradients for every pixel, we take only
the green gradient to determine the initial point p and then
search the whole transition region Z(p) by calculating all
three gradients adjacent to the initial point p.

The search procedure for the transition region is com-
posed of three steps. Starting with j=1, the first step is to
find the initial point p by increasing the pixel location j one
by one until the green gradient magnitude becomes greater
than or equal to 7, as follows:

j—j+1 while |[Eg(j)| <T,

set p=j if |[Eg(j)|=T. (4)
The pixel location p must be located in a transition area, so
the search starts from this point for the transition region.
In the second step, starting from the initial point p, the
left and the right transition width m and n, respectively, are
calculated for the transition region Z(p), as shown in Fig. 5.
Initially, m and n are set to zero. The transition region with
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Fig. 5 Left transition width m and the right transition width n from
the initial point p.

chromatic aberration has the same sign for R, G, and B
gradient values, which means that the intensity level of
each color component slants in the same direction. Thus,
the sign of the gradient value of the green signal at the
initial point p,

s(p) = sgn[Es(p)], (5)

is computed first, and then we observe whether the adjacent
pixels’ gradient value has the same sign as s(p). A pixel can
be considered as a part of the transition region even if just
one color component varies. The largest gradient value
among R, G, and B at x that has a similar edge to G at a
given initial point p is defined as follows:

H(x|p) = max{s(p) Eg(x),s(p) Eg(x),s(p) E5(x)}, (6)

where x is the pixel located adjacent to the point p. A pixel
at x is classified into the following three cases depending
on the H(x|p) value:

e Case 1, H(x|p)<0: All three color values at x have
the opposite gradient polarity to the green value at p.

s Case 2, 0=<H(x|p) <T: At least one color signal at x
has the same gradient polarity with the green signal at
p, but the gradient magnitude is not large enough to
justify as the presence of an edge.

 Case 3, T<H(x|p): x can be considered as a part of
the transition region because at least one color com-
ponent has an edge similar to that of the green signal
at p.

The transition widths m and n are increased as x moves
to the left and the right side from the initial point p, respec-
tively, as long as H(x|p) satisfies the condition in case 3.
The width increment will stop at the first left and right
point, independently, where H(x|p) becomes less than 7.
As a result, the left and the right boundary pixel locations,
[(p) and r(p), are calculated as

l(p):p—m, (7)
and
r(p)=p+n, (8)

and then the final transition region Z(p) detected for the
initial point p is defined as

Z(p) ={jlilp) <j < r(p)}. )

The search for the next transition region starts from
r(p)+1 with checking the gradient value of the green sig-
nal, as in Eq. (4).

3.2 Detecting and Eliminating Chromatic Aberration

Chromatic aberration is detected independently in the red
and the blue signals by searching for the pixels inside the
transition region that violate the color difference property
for edges. Because the color differences in these pixels are
mainly responsible for undesirable color fringes, the elimi-
nation process corrects the color difference values of the
detected pixels to remain inside the proper range. New
color difference values are chosen between the two color
difference values at [(p) and r(p). The pixels with color
difference values larger than the maximum difference val-
ues at either /(p) or r(p) are replaced by the maximum
difference values at either /(p) or r(p). On the other hand,
the pixels where the color difference values are smaller
than the minimum difference values at either I(p) or r(p)
are replaced by the minimum difference values at either
I(p) or r(p). After adjusting the color difference signals, the
original green input signal is added to compute the cor-
rected red and blue pixel values. Output RGB signals are
expressed as

[ min{DR[i(p) 1D ()T} + GG). i Dy(j) < min{D[1(p)]. Delr(p)]}

R(j) =\ max{D[l(p)].Dg[r(p) 1} + G(j), if Dg(j) > max{Dg[1(p)],Dx[r(p) 1}, (10)

(R(j), otherwise

(min{D,[1(p)].D4[r(p)]} + G(j).  if Dy(j) < min{Dy1(p) . Dy r(p)]}

B(j) =\ max{Dll(p)].Ds[r(p) 1} + G(j), if Dy(j) > max{Dy[1(p)]. DL r(p)1}, (11)

(B()), otherwise
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Fig. 6 Color difference compensation for eliminating chromatic aberration from the image in Fig. 4. (a)
Corrected edge images. (b) RGB intensity along horizontal line of (a). (c) Corrected color difference
between the red and the green components. (d) Corrected color difference between the blue and the

green components. (Color online only.)

G(j)=G()), (12)
where j € Z(p).

This method is applied to the image in Fig. 4(a), as
shown in Fig. 6. Unlike the original color difference values
in Figs. 4(c) and 4(d), Figs. 6(c) and 6(d) show that the
undesirable color difference values in the transition region
are replaced with the maximum color difference values of
the corresponding boundary pixels so that the difference
values remain inside the proper range satisfying the color
difference property for edges. The geometric shift and the
color blur in the red and the blue signals has been cor-

rected, resulting in a clean edge without color fringes [see
Figs. 6(a) and 6(b)].

4 Experimental Results

To verify the efficacy of the proposed method, the algo-
rithm has been applied to several images acquired from
various digital cameras. All of the test images were digi-
tized to 8 bits for each color. The maximum absolute value
of the Sobel gradient, |E~(j)|, for an 8-bit digitized image is
1024. If T in Eq. (4) is set to a high value, insufficient
elimination occurs for the longitudinal aberration because
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the pixels where intensity level varies with gentle slope,
mostly due to longitudinal aberration, are excluded from
being detected as a transition region. On the contrary, when
T is set to a low value, the algorithm becomes sensitive to
noise. It is empirically found that 7=30 generates satisfac-
tory results for most images.

Figure 7 shows the results for two degraded images with
different color fringe widths. Both Figs. 7(a) and 7(d) have
a size of 1536 X 2048 pixels, and a 160 X 160 pixel area is
enlarged from each image for close observation [see Figs.
7(b) and 7(e)]. Figure 7(b) shows very thick blue fringes,
approximately 15 pixels in width, around the wood railing.
Figure 7(e) shows purple fringes of only 3 pixels in width
along the borders of the roofs. It can be seen that the pro-
posed algorithm corrects both the thick and the thin color
fringes [Figs. 7(c) and 7(f)].

Experimental results for various types of aberrations are
given in Fig. 8. Figure 8(a) is an image of size 1536
X 2048 pixels, where red fringes are present along the
edges of the image. Figure 8(d) shows two enlarged parts of
the images before and after the elimination process. The
proposed method effectively eliminates the red color
fringes of approximately 10-pixel width that mostly occur
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Fig. 7 Experimental results for the images with different color fringe widths. (a) House image. (b)
Enlarged image of the bottom-left part of (a) (degraded PSNR=16.3292 dB, green PSNR
=25.2519 dB). (c) Enlarged image of the aberration-eliminated result (corrected PSNR=25.0103 dB).
(d) Cathedral image. (e) Enlarged image of the middle-left part of (d) (degraded PSNR=19.9807 dB,
green PSNR=24.7617 dB). (f) Enlarged image of the aberration-eliminated result (corrected PSNR

=24.4233 dB). (Color online only.)

due to lateral aberration. Figure 8(b) is an image of a car
having size 1000 X 667 pixels. In Fig. 8(e), blue color
fringes due to longitudinal aberration are also corrected
properly. Last, Fig. 8(c) shows an image of size 960
X 1280 pixels with the most frequent purple fringes. Be-
cause the proposed method independently corrects both the
red and the blue signal, the purple fringes are also elimi-
nated successfully [see Fig. 8(f)].

Experiments were implemented in a MATLAB language
program on an Intel Core2 Duo 3-GHz CPU PC with 2-GB
RAM. The average operation CPU time for 20 color images
of size 15362048, including Figs. 7(a) and 7(d), was
1.413 s.

For a quantitative evaluation, we calculated a peak
signal-to-noise ratio (PSNR) from a 16 X 16 region selected
from one side of an edge where a color fringe appears. The
PSNR is defined as

(2552>
PSNR =10 log| —— (13)
o’

where 255 represents the peak intensity value, and o is a
standard deviation. Since we use a color image, the stan-
dard deviation is calculated as a square root of the sum of
each R, G, B variance divided by 3. If there were no color
fringes, either side of an edge should be considered as a
homogeneous area so that the standard deviation remains a
small value. The results of the PSNR change are shown in
Table 1. The corresponding green PSNR value, considered
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as the reference signal, is illustrated also to help predict the
amount of color fringes. For all the tested images, the
PSNR measured in the color fringe region is smaller than
the corresponding region’s green PSNR. This is because
that the red and the blue components keep varying even
after the green component reaches a stable region due to
chromatic aberration. However, color fringes are well
eliminated after the correction process so that the PSNR
value increases close to the corresponding green PSNR.

Last, to evaluate the performance of the proposed
method, we compared the result with a reference image
acquired using a 3MOS digital video camera, Panasonic
HDC-TM200, in Fig. 9. We have photographed the same
scene shown in Fig. 9(a) with two different cameras. Figure
9(b) shows an enlarged degraded image acquired with a
CCD digital camera and the corresponding RGB intensity
along the marked horizontal line. Inconsistencies exist be-
tween each color transition region in the edges so that color
fringes are created along both edges. Using our method, the
transition regions between each color are modified to be
well matched so that the color fringes are well eliminated
[see Fig. 9(c)]. Last, comparing the correction result with
Fig. 9(d), the same region obtained with the 3MOS camera,
we can observe that the proposed method is considerably
moreefficient.

5 Conclusion

This paper proposes a novel method for removing chro-
matic aberration using image processing from a single de-
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Fig. 8 Experimental results for the images degraded with various
types of aberration. (a) Train image, (b) Car image, and (c) Church
image. (d) Left: Enlarged image of the train image (degraded
PSNR=16.3279 dB, green PSNR=22.3694 dB). Right: Enlarged
image of the aberration-eliminated result (corrected PSNR
=22.3713 dB; size: 300X 300). (e) Left: Enlarged image of the car
image (degraded PSNR=19.4502 dB, green PSNR=21.9965 dB).
Right: Enlarged image of the aberration-eliminated result (corrected
PSNR=22.0106 dB; size: 130 < 130). (f) Left: Enlarged image of the
church image (degraded PSNR=18.4731 dB, green PSNR
=22.4013 dB). Right: Enlarged image of the aberration-eliminated
result (corrected PSNR=22.1513 dB; size: 130 X 130). (Color online
only.)

graded image. We first analyze the color behavior of a nor-
mal image edge in terms of the color difference signals and
show that the color fringes due to chromatic aberration can
be detected using the color difference property for edges.
We introduce a fast and simple algorithm that corrects the
chromatic aberration by adjusting the color difference value
between the red and the green signals and that between the
blue and the green signals to remain inside the proper
range.

Unlike previous algorithms, the proposed method de-
tects and eliminates the color fringes directly from an input

Optical Engineering

Table 1 PSNR comparison of color fringe regions before and after
the correction process.

Green Degraded Corrected

PSNR PSNR PSNR
House image 25.2519 dB 16.3292 dB 25.0103 dB
Cathedral image 24.7617 dB 19.9807 dB 24.4233 dB
Train image 22.3694 dB 16.3279 dB 22.3713 dB
Car image 21.9965 dB 19.4502 dB 22.0106 dB
Church image 22.4013 dB 18.4731 dB 22.1513 dB
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Fig. 9 Performance comparison. (a) Photographed scene. (b) Left:
Enlarged degraded image photographed with an one-CCD camera
(size: 185x185). Right: RGB intensity along the marked horizontal
line. (c) Left: Enlarged image of the aberration-eliminated results
(size: 185x 185). Right: RGB intensity along the marked horizontal
line. (d) Left: Enlarged image photographed with the 3MOS camera
(size: 185 185). Right: RGB intensity along the marked horizontal
line.
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image. Hence, the method is free from the accuracy of the
aberration kernel model and from the high computational
complexity of the parameter estimation process. The algo-
rithm significantly reduces both the lateral and the longitu-
dinal aberrations without reference to the width of the color
fringe or the type of aberration. Since the proposed algo-
rithm requires no a priori knowledge, such as the precali-
brated test pattern or a location of the aberration center, it
can be easily applied to any image. The proposed method
can be used in many real-time video camera applications
with low computational complexity and simple 1-D sepa-
rable structure.
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