MAT-2930 Algèbre Linéaire Appliquée

Diagonalisation des matrices & Systèmes dynamiques discrets

Soit la suite entière d'ordre 2 définie par : $y_{k+2} = y_{k+1} + y_k$ avec les conditions initiales $y_0 = 0$ et $y_1 = 1$.

1. (Matlab). Calculer les premiers termes y_2 , y_3 , y_4 , y_5 , y_6 , y_7 , y_8 , y_9 , y_{10} de cette suite.

On voit tout de suite que le calcul de y_k avec l'équation ci-dessus devient de plus en plus laborieux au fur et à mesure que k devient plus grand. L'objectif de cet atelier est de trouver une relation bien plus simple qui permet de calculer directement y_k en fonction de k. Pour ce faire, on utilisera les notions d'algèbre matricielle en introduisant le vecteur u_k défini par :

$$u_k = \begin{bmatrix} y_k \\ y_{k+1} \end{bmatrix}$$

La suite ci-dessus peut alors s'écrire sous la forme matricielle suivante :

$$u_{k+1} = A u_k$$

A étant une matrice carrée de genre 2.

- 2. (Manuel). Trouver la matrice A.
- 3. (Manuel). Exprimer u_k en fonction de A^k et u_0 .
- 4. (Matlab). Calculer A^{10} . Utiliser le résultat pour déterminer y_{10} .
- 5. (Manuel). Donner l'équation caractéristique de la matrice A.
- 6. (Manuel). Monter que les vecteurs propres v_1 et v_2 associés respectivement à λ_1 et λ_2 s'écrivent comme suit en fonction de λ_1 et λ_2 :

$$v_I = \begin{bmatrix} -\lambda_2 \\ I \end{bmatrix}$$
 , $v_2 = \begin{bmatrix} -\lambda_1 \\ I \end{bmatrix}$

- 7. (Manuel). Expliquer pourquoi A est diagonalisable.
- 8. (Manuel). Exprimer en fonction de λ_1 et λ_2 les matrices P, P^{-1} et la matrice diagonale D tel que :

$$A = P D P^{-1}$$

- 9. (Manuel). Exprimer A^k en fonction de k, λ_1 et λ_2 .
- 10. (Manuel). En déduire l'expression de y_k en fonction de k, λ_1 et λ_2 .
- 11. (Manuel). Trouver les racines λ_1 et λ_2 de l'équation caractéristique de A.
- 12. (Manuel). En déduire l'équation régissant le comportement à long terme de la série.
- 13. (**Manuel**). En déduire la valeur du rapport y_{k+1}/y_k à long terme.
- 14. (Matlab). Calculer y_{10} en utilisant l'équation du point 10.
- 15. (Matlab). Calculer y_{10} en utilisant l'équation du point 12.