MAT-2930 Algèbre linéaire appliquée Examen Partiel - Automne 2021 21 Octobre 2021 de 13h30 à 15h30 (120 minutes) Professeur : Mohamed Haj Taieb

Cet examen comporte 6 questions sur 13 pages (incluant celle-ci), comptabilisées sur un total de 100 points. L'examen compte pour 35% de la note totale pour la session.

- Vous avez droit à une feuille manuscrite recto-veso en format lettre, ainsi qu'une calculatrice acceptée;
- **Inscrivez votre nom** et votre numéro de dossier étudiant en bas de cette page;
- Assurez-vous d'avoir toutes les pages;
- Le verso : sert de brouillon et ne va pas être corrigé
- SVP sortez votre carte étudiante et placez-la visiblement sur votre table de travail;

Question	Points	Score
1	10	
2	15	
3	15	
4	15	
5	25	
6	20	
Total:	100	

Nom:	Numéro de dossier :		

- 1. (10 points) Vrai ou Faux? Sans justification
 - Écrire vrai ou faux face à chaque phrase.
 - (a) (1 point) Les coordonnées homogènes sont nécessaires pour effectuer la rotation d'une image dans l'espace \mathbb{R}^3 .
 - (b) (1 point) Les lignes d'une matrice A inversible forment un ensemble de vecteurs linéairement indépendants.
 - (c) (1 point) Pour deux vecteurs \vec{u} et \vec{v} dans l'espace \mathbb{R}^3 , si $\vec{u} \cdot \vec{v} = 0$ alors $||u + v||^2 < ||u||^2 + ||v||^2$
 - (d) (1 point) Prenons une matrice $A(m \times m)$ non singulière. Soit B et C deux matrices $m \times m$ tel que AB = AC alors on a forcément B = C.
 - (e) (1 point) On peut avoir un système linéaire avec exactement 2 solutions.
 - (f) (1 point) Considérer 2 matrices équivalentes en ligne A et B. Ces 2 matrices ont le même équivalent en ligne en forme échelon réduit.
 - (g) (1 point) Le rang d'une matrice correspond au nombre de ligne nulle dans sa forme échelon.
 - (h) (1 point) La solution triviale pour un système linéaire homogène correspond au vecteur nul.
 - (i) (1 point) La méthode itérative de Jacobi converge plus rapidement que la méthode itérative de Gauss-Seidel.
 - (j) (1 point) Soit une matrice $A(m \times m)$ non inversible. Alors forcément le rang de A est inférieur à m.

- (a) Faux
- (b) Vrai
- (c) Faux
- (d) Vrai
- (e) Faux
- (f) Vrai
- (g) Faux
- (h) Vrai
- (i) Faux
- (j) Vrai

- 2. (15 points) Factorisation LU et P^TLU
 - (a) (8 points) En utilisant la factorisation LU, résoudre Ax = b avec

$$A = \begin{bmatrix} 2 & 2 & -1 \\ 4 & 0 & 4 \\ 3 & 4 & 4 \end{bmatrix} \text{ et } b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Solution:

8 parts
$$p$$
) $A = LU$

$$A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 0 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 2 & 1 & 0 \\ 3 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & 1 & 5.5 \end{bmatrix} \frac{1}{2} - \frac{3}{2} \frac{1}{2}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 2 & 4 & 4 \\ 3 & 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 2 & 4 & 4 \\ 3 & 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 2 & 4 & 4 \\ 3 & 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 2 & 4 & 4 \\ 3 & 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 2 & 4 & 4 \\ 3 & 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 2 & 4 & 4 \\ 3 & 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & -1 \\ 2 & 4 & 4 \\ 3 & 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 \end{bmatrix}$$

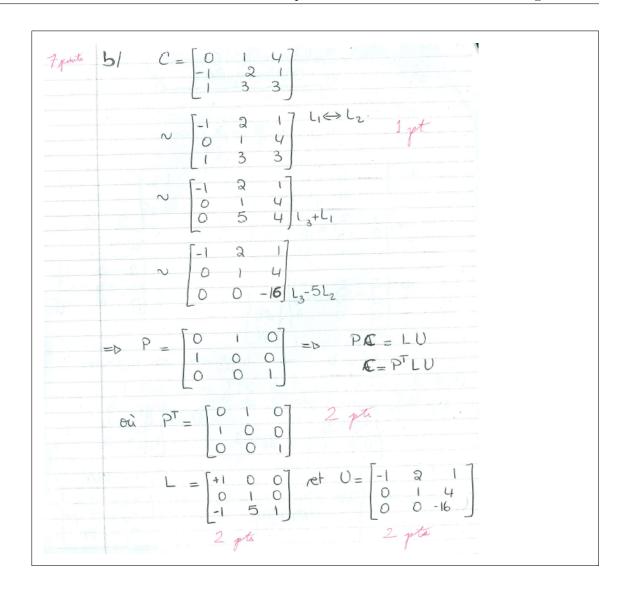
$$= \begin{bmatrix} 2 & 2 & 4 \\ 2 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2$$

(b) (7 points) Donner une décomposition P^TLU de la matrice C :

$$C = \begin{bmatrix} 0 & 1 & 4 \\ -1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix}$$

MAT-2930 Examen partiel Page 4 de 13



3. (15 points) Transformation linéaire

Soit la transformation
$$T$$
 suivante $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+z \\ y+z \\ x+y \end{bmatrix}$

(a) (5 points) Montrer que la transformation T est linéaire.

Solution:

$$\begin{array}{lll}
\alpha / & \text{Soit} & \overrightarrow{A}_{1} = \begin{bmatrix} x_{1} \\ y_{1} \\ \overline{z}_{1} \end{bmatrix} & \text{et} & \overrightarrow{A}_{2} = \begin{bmatrix} x_{2} \\ y_{2} \\ \overline{z}_{2} \end{bmatrix} \\
\Rightarrow & \overrightarrow{A}_{1} + \overrightarrow{A}_{2} = \begin{bmatrix} x_{1} + x_{2} \\ y_{1} + y_{2} \\ \overline{z}_{1} + \overline{z}_{2} \end{bmatrix} \\
= & T (\overrightarrow{U}_{1} + \overrightarrow{M}_{2}) = T \begin{bmatrix} x_{1} + x_{2} \\ y_{1} + y_{2} \\ \overline{z}_{1} + \overline{z}_{2} \end{bmatrix} = \begin{bmatrix} x_{1} + x_{2} + \overline{z}_{1} + \overline{z}_{2} \\ x_{1} + x_{2} + \overline{z}_{1} + \overline{z}_{2} \\ x_{1} + x_{2} + \overline{y}_{1} + \overline{y}_{2} \end{bmatrix} \\
= & \begin{bmatrix} x_{1} + \overline{z}_{1} \\ y_{1} + \overline{z}_{2} \\ x_{1} + y_{1} \end{bmatrix} + T (\overrightarrow{M}_{2}) & \text{et} & C \in \mathbb{R} \\
& T (C \overrightarrow{U}_{1}) = T \begin{bmatrix} C (x_{1} + x_{2}) \\ C (y_{1}) \\ C (z_{1}) \end{bmatrix} & \text{et} & C (x_{1} + \overline{z}_{1}) \\
& T (C \overrightarrow{U}_{1}) = T \begin{bmatrix} C (x_{1} + x_{2}) \\ C (y_{1}) \\ C (z_{1}) \end{bmatrix} & \text{et} & C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1} + x_{2}) \\
& T (x_{1} + x_{2}) = C (x_{1}$$

(b) (5 points) Donner la matrice A canoniquement associée à la transformation T.

Solution:

b

$$T: \mathbb{R}^3 \to \mathbb{R}^3 \implies A_{3\times3}$$
 $exi A = \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) & T(\vec{e}_3) \end{bmatrix}$
 $T(\vec{e}_1) = T\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $T(\vec{e}_2) = T\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
 $T(\vec{e}_3) = T\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $A_{3\times3} = T(\vec{e}_3) = T\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $A_{3\times3} = T(\vec{e}_3) = T\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

(c) La transformation du vecteur $\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ est donnée par le vecteur $\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ c'est-à-dire :

$$T \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} x_1 + z_1 \\ y_1 + z_1 \\ x_1 + y_1 \end{bmatrix} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$$

i. (1 point) Déterminer x_1, y_1 et z_1 en fonction de x_2, y_2 et z_2 .

$$x_1 = \frac{x_2 - y_2 + z_2}{2}$$

$$y_1 = \frac{-x_2 + y_2 + z_2}{2}$$
$$z_1 = \frac{x_2 + y_2 - z_2}{2}$$

ii. (1 point) En déduire la transformation U qui transforme $\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ en $\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ c'est-à-dire :

$$U \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$

Solution:

$$U\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} \frac{x_2 - y_2 + z_2}{2} \\ \frac{-x_2 + y_2 + z_2}{2} \\ \frac{x_2 + y_2 - z_2}{2} \end{bmatrix}$$

iii. (2 points) Donner la matrice B canoniquement associée à la transformation U.

Solution:
$$1/2$$

$$B = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix}$$

iv. (1 point) En déduire A^{-1} . (A est la matrice associée à la transformation T).

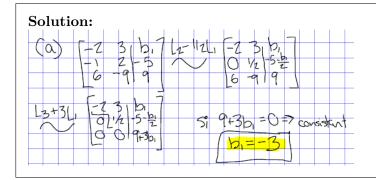
A⁻¹ = B =
$$\begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix}$$

4. (15 points) Système linéaire

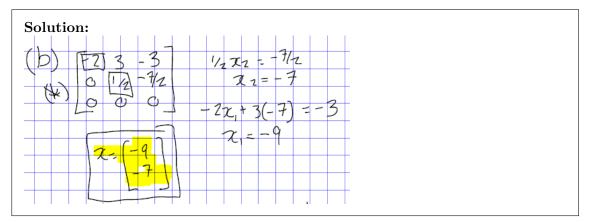
Soit la matrice:

$$A = \begin{bmatrix} -2 & 3\\ -1 & 2\\ 6 & -9 \end{bmatrix}$$

(a) (3 points) Pour quelle(s) valeur(s) de b_1 dans \mathbb{R} le système $Ax = \begin{bmatrix} b_1 & -5 & 9 \end{bmatrix}^T$ est consistant?



(b) (3 points) Donner la ou les solutions de ce système dans le cas où il est consistant.



(c) (1 point) La matrice A est-elle inversible? Justifier votre réponse.

Solution:

A n'est pas inversible. L'inversion matricielle n'existe pas pour une matrice rectangulaire.

(d) (2 points) Calculer le rang de la matrice A.

Solution:

rang(A) = 2 car on a 2 colonned pivot dans l'équivalent en ligne réduit.

(e) (2 points) Déterminer une base pour le sous-espace des colonnes de A, Col A.

Solution: Les vecteurs colonnes de la matrice A associés au positions des colonnes

pivots:

$$\begin{bmatrix} -2\\-1\\6 \end{bmatrix}, \begin{bmatrix} 3\\2\\-9 \end{bmatrix}$$

(f) (2 points) Quelle est la dimension du sous-espace Nul A? Justifier votre réponse.

Solution:

 $\dim \text{Nul } A = 0 \text{ car } 0 \text{ colonnes non-pivot (ou } 0 \text{ variable libre)}.$

(g) (2 points) Déterminer un vecteur qui appartient au sous-espace Nul A.

Solution:

Vecteur du sous-espace Nul $A:\vec{0}$ car $A\vec{0}=\vec{0}.$ D'ailleurs c'est le seul vecteur car dim Nul A=0.

5. (25 points) Transformation linéaire

Pour les transformations linéaires de \mathbb{R}^2 vers \mathbb{R}^2 suivantes calculer la matrice de transformation.

(a) (3 points) Matrice F de réflection autour de l'axe des y.

Solution:

$$F = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b) (3 points) Matrice D qui étire la composante x par facteur 2 et la composante y par 3.

Solution:

$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

(c) (5 points) Matrice R de rotation horaire de 30° autour de l'origine.

Solution:

$$R = \begin{bmatrix} \sqrt{3}/2 & 1/2\\ -1/2 & \sqrt{3}/2 \end{bmatrix}$$

(d) (5 points) Matrice P de projection sur la ligne y = -x.

Solution:

$$P = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

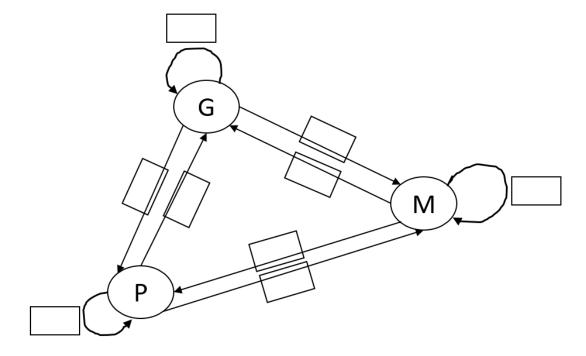
(e) (9 points) Matrice de la transformation composite C de la rotation antihoraire de 60° suivie de la reflexion autour de l'axe y=x.

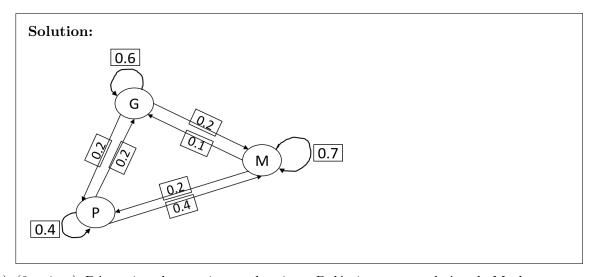
$$C = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$$

6. (20 points) Chaîne de Markov

Des données ont été accumulées sur la taille des enfants par rapport à celle de leurs parents stipulent que

- Les probabilités qu'un parent de **grande (G)** taille ait un enfant de grande, moyenne ou petite taille sont respectivement de 0.6, 0.2 et 0.2.
- Les probabilités qu'un parent de **moyenne** (M) taille ait un enfant de grande, moyenne ou petite taille sont respectivement de 0.1, 0.7 et 0.2.
- Les probabilités qu'un parent de **petite** (**P**) taille ait un enfant de grande, moyenne ou petite taille sont respectivement de 0.2, 0.4 et 0.4.
- (a) (3 points) Compléter le graphe de la chaîne de Markov en inscrivant les différentes probabilités de transistion dans les rectangles de la figure suivante.





(b) (3 points) Déterminer la matrice stochastique P décrivant cette chaîne de Markov.

Solution:

$$P = \begin{bmatrix} 0.6 & 0.1 & 0.2 \\ 0.2 & 0.7 & 0.4 \\ 0.2 & 0.2 & 0.4 \end{bmatrix}$$

(c) (2 points) Sans utiliser la chaîne de Markov calculer la probabilité qu'une personne de petite taille aie un petit enfant de grande taille.

Solution:

$$0.4 \times 0.2 + 0.4 \times 0.2 + 0.2 \times 0.6 = 0.24$$

(d) (4 points) Utiliser la matrice P de la chaîne de Markov pour déterminer la probabilité qu'une personne de petite taille aie un petit enfant de grande taille.

Solution:

$$X_{0} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$X_{1} = P X_{0} = --- = \begin{bmatrix} 0.2 \\ 0.4 \\ 0.4 \end{bmatrix}$$

$$X_{2} = P X_{1} = --- = \begin{bmatrix} 0.24 \\ 0.48 \\ 0.28 \end{bmatrix}$$

$$\Rightarrow \text{ la réponse est } 0.24 \text{ so } 24\%$$

(e) (8 points) Quelle sera la proportion de la taille de la population à long terme.

on Jeeson	d (P-I)	x = 0 00	(I-P)X=0	C C	Civ	9,V 0	y _ X	2+2X2
[] - - C	1.0- 0,0. FQ-1 S,0 C,0- S,0	-0,2 ' 0 -0,4 0 1-0,4 0	9		9,5	$x_2 - 5x_3 = 0$	$X_{1} = \frac{X_{1}}{X_{2}} = X_{2}$	У Х ₃
$ \sqrt{\begin{array}{c} 0, \\ -0, \\ -0 \end{array}} $	4 -0.1 2 0.3 2 -0.2	-0.2 · 0 -0.4 0 0.6 0		- 1/0-1	$\Rightarrow \begin{cases} X_1 \\ X_2 \end{cases}$	$= X_3$ $= 2X_3$		
				De			1	
~ -6	-1 2 3	-2 0 -4 0 6 0				$X_3 + \alpha X_3 + X_3$ $X_3 = 1/4$	= 1	
							$Q = \begin{bmatrix} 1/4 \\ 1/2 \\ 1/4 \end{bmatrix}$	
~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-1 2.5	-2 10 -5 0	L2+ 1/2 L1			[1/2]	[1/4]	
lo	-2.5	5 0	$\int L_3 + \frac{1}{2} L_1$	ià lan	o terme	50% de la grande	population et d faille et 25%	e tai
01	y -1	-2 10	7	petite	taille.			